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Introduction

Background
• Studies of economic decision making, often assume that people seek to

maximize subjective value or “utility”. Utility functions are often assumed
to be idiosyncratic but stable over time.

• A recent theory based on ergodicity (Peters, 2019) proposes that people
maximize the growth rate of their wealth. This predicts that utility
functions should change as a function of the dynamics of the environment

• Specifically: additive dynamics predict linear utility, while multiplicative
dynamics predict logarithmic utility.

• Recent evidence suggests that people quickly adapt their utility functions
to the dynamics of the environment (Meder et al., 2021; Skjold et al.,
2024).

Here we explore how this affects the neural encoding of value.

Task & Data

We here looked at the passive learning task from Meder et al. (2021). For each
participant (n = 16 included), there is data from a session with an additive
dynamic with a multiplicative dynamic (2 runs each).

Fig. 1: Adapted from figure 1 of: Meder et al. (2021). Published under CC-BY-4.0
(https://creativecommons.org/licenses/by/4.0/). Participants trigger a spinning wheel
indicating the random selection of the next image, after the image is displayed participants see
its effect on their wealth. The nine images have stable, unique, growth-rates within a session.

Modeling Change in Utility

To study how subjective changes in wealth are encoded in the brain, we use an
isoelastic utility function. This function contains linear (η = 0) and logarithmic
utility (η = 1) as special cases:

∆u = u(x)t − u(x)t−1

u(x) =
{

xη−1−1
1−η , if η ≥ 0, η ̸= 1

ln(x), if η = 1
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Fig. 2: The top left row is an example trajectory from the additive session, the bottom row
from the multiplicative session for the first 75 trials. On the right, the changes in utility are
plotted. To indicate that the stimuli have a stable growth rate only under the correct
mapping, vertical lines indicate the occurrence of the stimulus with the most negative growth
rate.
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Classic Analyses: ∆u
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(a) Activation: Statistical map of a classic GLM analysis of the second level contrast of a parametric modulator with η+ = 0 and η∗ = 1 (t-test, threshold,
p < 0.001, cluster threshold, kc = 109)
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(b) Model comparison: LogBF maps of the comparison of three GLMs differing only in their parametric modulators (EE: η+ = 0, η∗ = 1; EUT Lin:
η+ = 0, η∗ = 0, EUT Log: η+ = 1, η∗ = 1) (Soch and Allefeld, 2018)

Fig. 3: The analyses presented here are in principle based on parametric modulators of an impulse response at the time of reward outcome.
In the additive session ∆u is defined by η+ and in the multiplicative by η∗. All runs and sessions were concatenated.

Bayesian method: Computational Parametric Mapping

Fig. 4: Schema of the Bayesian method: We discretize the parameter space over η+ and η∗ and try to find the location, where the average
“neural” signal after convolution with an HRF, has the best fit to the BOLD signal (Steinkamp et al., 2022).

Preliminary: η-estimation
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(a) MLE approach: After model fitting, η+ and η∗ were extracted from voxels
where the log-likelihood was greater than the log-likelihood of a null-model and
where the signal scaling parameter was greater than 0. The upper row shows
density histograms of parameter estimates of each participant for voxels, that
survived the thresholding (n = 168− 730). The lower plots show the masked data
of the participant with the highest number of surviving voxels.
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(b) Bayesian approach: After model fitting, the MAP estimates of η+ and η∗

were extracted from voxels where the posterior probability of the scaling
parameter was > 0.75 and where the signal scaling parameter was greater than 0.
The top row shows density histograms of parameter estimates of each participant
for voxels, that survived the thresholding (n = 64− 1246). The lower plots show
the masked data of the participant with the highest number of surviving voxels.

Fig. 5: We aimed to quantify the voxel-wise η+ and η∗ across the two runs and sessions, for this analysis it was done in a partial mask
derived from Fig. 3a. We used two approaches, maximum likelihood estimation (Fig. 5a) and a variational Bayes approach that is inspired
by receptive field modeling (Fig. 5b, Fig.4).

Conclusion

Here we present a demonstration of mapping cognitive parameters onto the brain, including a novel Bayesian method.
The results are too preliminary to draw conclusions about whether the neural data reflect behaviorally observed changes
in risk preferences.
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