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Introduction

» To understand the neural basis of cognition, Three advantages:

cognitive models have to be incorporated into the 1. Circumvents need for behavior

modelling of neural data. 2. Allows topographic mapping of cognitive

» We introduce computational parametric mapping parameters and model comparisons

(CPM), which allows cognitive model to be fitted
directly to neural data.

3. Fast enough for extensive neural systems

» CPM builds on and generalizes the Bayesian
population receptive field frameworks®.

CPM
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The neural response function z(t) is a population receptive field model®!, that uses the parameter space, P, of
a cognitive model, as an analogy to the visual space used in retinotopy. The neural response function z(t), thus
maps experimental inputs x to a neuronal population response z, parametrized by unknown neural parameters 6,

2(t) =8> Sp,t)* N(p: 6,)
peO
To calculate z(t) it is necessary to calculate the population response S, which is the cognitive model's response
over (©), a discrete subset of the parameter space P. In our case, the cognitive field — analogous to a receptive
field — is a Gaussian function N defined by location {j, t,} and standard deviation {0, 0,}. In essence, z(t)
is the sum of population responses S, weighted by a cognitive field N. This generative model is fitted to fMRI

data y by using the variational Laplace method®.
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Simulations

Simulation of Experiment

Intertrial Response Wheel Fractal Wealth Next
interval Cue spins onset update trial

We model a classic learning task using a TD-learning algorithm — with complete serial
compounding® — using changes in utility for the estimation of the reward prediction error:
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% where u is an isoelastic utility function and C; is the current wealth level. The learning rule is:

If no response,
reminder

0 = U1 + yWiXep1 — WX,
Wt—|—1 — Wt _I_ CV&

T, A, %6’4 . . . . ape
"o e, P, Here, we are interested in mapping learning rate («) and utility (n) parameters to the human
Experimentalinput ————»  —f———f— S | | I reward system, constituting the parameter space P in CPM. Our simulation consisted of artificial
‘J ¥} 11 = . . . . .
1D algorithm Reward prediction errors voxels” that represent different data generation processes using combinations of learning rates

a={0.0,1/3,2/3,1.0} and utility parameters n = {—1.0,0.0, 1.0}, at different noise levels. We

Participants learn to associate images with a fixed  performed parameter and model recovery using Bayesian model reduction.

change in their wealth.

Parameter Recovery Model Recovery

Parameter recovery - Gaussian noise with SD 0.10
15

Model Comparisons
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—Generally good model recovery at low noise

Conclusion

Map of model comparisons Map of cognitive parameters » CPM builds on receptive field models to map cognitive

5.0 085 models onto brain.

40 0.43 » Proof of principle analyses show robust model & parameter
30 0 recovery.

2.0 0.3 » CPM is fast enough to apply to real neuroimaging data.

10 085

Index of winning model (winner takes all). Map over utility parameters 7.
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